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This work is aimed at the obtention of finite-difference equations for inhomogeneous 
anisotropic media for the general case of free orientation of eigen-vectors. Equations 
corresponding to boundary points are established. c 1991 Academic Press. Inc. 

INTRODUCTION 

The finite difference method is a tool for solving partial differential equations. It 
is based on an approximate discretization of the differential equations in a finite set 
of grid points. This method has been widely used for solving Laplace’s equation [ 1 ] 
and for solving elliptic partial differential equations with mixed partial derivatives 
in regular grids [2]. 

This paper deals with the solution of electrostatic potential in inhomogeneous 
anisotropic media by means of finite difference equations (f.d.e.). It lies on the 
discretization of an elliptic partial differential equation using a rectangular non- 
regular grid. Our analysis is restricted to the bidimensional case. 

Different methods can be applied in deriving finite difference approximations for 
differential equations, especially when the equation can be expressed as the 
divergence of a vector field [3]. It is well known that the most usual method is 
based on finite Taylor’s series expansions of the solution. In this paper two alter- 
native f.d.e.s derived from this are presented for continuous media in a non-regular 
grid. The validity of these results does not depend on the orientation of the tensor 
permittivity eigendirections. This accounts for a more general approach than that 
of former results [4]. For this f.d.e. the local truncated error is calculated. The main 
purpose is to provide useful results without carrying out a rigorous error analysis. 
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Besides, the discontinuous media are also considered by means of the boundary 
between two homogeneous anisotropic media as the limit of an inhomogeneity, 
providing the f.d.e. for both regular and singular boundary points. Finally, some 
examples showing the results of the proposed method are commented upon. 

DIFFERENCE EQUATIONS 

It is well known that the electrostatic potential in a space region without free 
charges obeys the equation 

div(K grad V) = 0, (1) 

where K is the medium dielectrical tensor permittivity. For bidimensional and linear 
media, it can be represented in a matrix form as 

K(r) = K,,(r) K,,(r) 

Kdr) > L(r) . 
(2) 

This matrix is symmetric in cases of physical importance and the eigen-values 
are real and greater than one [S]; thus Eq. (1) becomes an elliptic partial 
differential equation. 

A square grid, with grid size h, is widely used to discretize the partial differential 
equations. Unfortunately, the boundary geometry of some problems does not lit 
with such a grid and a non-uniform rectangular grid has to be considered [6]. 

Let us denote “star” for the subset of points of the grid related in a f.d.e., as 
indicated in Fig. 1; “0” is an internal grid point and e, n, W, s are parameters that 
stand for the asymmetry of the star in geographic nemothecnia, accomplishing the 
relation 0 < e, n, W, s < 1. 

In order to obtain a relation among potentials in 0, 1, . . . . 8 points, the derivatives 

FIG. 1. A “star” or set of points related in a f.d.e 
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which appear in Eq. (1) can be obtained from Taylor’s series expansions and intro- 
duced in Eq. (1) that also can be written as 

where 

The potential of the points 1, . . . . 8 expressed as Taylor’s expansions are 

V,= Vo+eV,y+e2V,,+ ... 

v,= V,+nV,.+n2V,:,.+ .” 

v3= v,-wv,+w2v,,+ ..’ 

v‘j = v, - s v, + s2 y,,,,, + . . 

V,= V,+eV,+nV,,+e2V,,+neV,,,+n2V,.,.+ ... 

v,= V~-WV,+nV,.+W2V,,-~wV,~~,+n2V,,,+ ..' 

v,= V~-WV,-svV,.+W2Vrx+SWV,,.+S2v~,,~+ '.. 

V8= VD+eV,--VV,.+e2V.,,-seV,,,+s’V,,.+ . . . . 

(4) 

where the potential derivatives are evaluated at the O-point. 
A combination of the expansions of V,, . . . . V4 allow us to obtain the expressions 

of K > V,? V.Y.X% and V,, as linear functions of the potentials of the points 0, 1, . . . . 4 
and terms containing powers of h greater than 2. 

The expression V,,, can be obtained from the combination of V,, . . . . V, expan- 
sions. Among all the-possibilities giving V,,, as linear functions of the potentials of 
the points 0, 1, . . . . 8 and terms containing~ powers of h greater than 2, the form 
indicated in expression (5) is considered [2] 

vs- v,+ If,- v,. (5) 

Taking into account these derivative expressions Eq. (3), particularly at the 
O-point, can be written in a compact form as 

i AiV/-( 5 Al) Vo=O(h3), 
i= 1 i= 1 

(6) 
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h3+ . . . . (7) 

Neglecting the truncation error, O(h3), Eq. (6) shows V. as a potential weighted 
mean of the star points. When the star is symmetric (e = w and n = s), the trunca- 
tion error of this f.d.e., (7), contains only terms with powers of h greater than 3. 

The Ai coefficients are given by 

1 
A,=----- 

e(e+ w) 
(K, 1 + wK,)> A,= -&j (K,, + SK,) 

1 
A,= 

w(e + w) (Kll - eK.J, A,= & W22 - $1 

As= -A,=A,= -As= Kl2 
(n + s)(e + w)’ 

(8) 

Although some of these coefficients are negative, this fact does not imply a 
contradiction with the Theorem of Medium Value [7]. By imposing the adequate 
conditions in each case, the coefftcients (8) lead to the f.d.e. obtained in the 
particular cases previously mentioned. Thus, if the eigenvector directions of tensor 
permittivity coincide with the coordinate axes K,* = 0, resulting in A, = A, = A, = 
A, = 0, and consequently four points are sufficient to discretize Eq. (3) for this 
approximation [4]. 

From Green’s second identity a Theorem of Medium Value form can be obtained 
for isotropic inhomogeneous media [ 81, 

K(r) V(r)= (K(r’) V(d)).,+&1.3 (r-r’).VKdv, 
I, 

which suggests an alternative way of obtaining the f.d.e. 
Thus, one can obtain other different coefficients if, instead of using the serie 

expansions (4), also expansions of values (9) are considered, 

K 11(l) VI ; K,,(,, V,; K1,(3,V3; K V. 22(4) 49 
(9) 

K 12(s) V5 ; K,,o, V,; K,,(,, v,; K,*(~, v,, 

where each subindex between brackets indicates the point at which K, is evaluated. 
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As in the previous case, the expansions of the first four values of (9) provide the 
expressions of V,, V,, V,,, and V,,,,, while Vr, is expressed in terms of the linear 
combination 

K 12(S) v, - K12(6) v, + K12(7, v, -K,,(s) v,. 

With these expressions, Eq. (3) becomes one of the same type as Eq. 
the Aj coefftcients are 

A,=--&(l-w~); &=-&(l-32); 

A3=w;y;)(l+e$J A,=-&(l+ng); 

K 
As=(n+s;;ui,w); 

K 
A6 = - (n + $@+ w); 

K 
As= -()2+s;;:itw). 

(10) 

(6), where 

(11) 

Note that in (8) the implied elements of the tensor permittivity are refered to the 
O-point (the absence of the indicative position must be interpreted in this manner). 
However, the tensor permittivity elements refered to each point of the star including 
the O-point are present at (11). This is due to the expansions used. 

Equation (6) with (11) represents an alternative f.d.e. when O(h3) is neglected. 
Now the truncation term is 

+ dK12 a2V 1 dK,,d2V 1 a2K,,,V d2K,, 8V -- axay+Z3jAQ+Z 
ax 

-- ay+axayax -- 
a.2 

i 
~,,a3v i arc,, a*v i a2rc22av K,~ a3v 

+(n-S) -3+------y+-- 
6 ay 2 ay ay 2 ay2 ZJ+Taxay2 

aiq2 azv i aiq, a2v i a%,, av a%,, a -- -- -- 
+%-+5 ax ay2+l ay2 ax+axayay 

h3+ ..‘. (12) 

Taking into account the truncation error a priori, the two f.d.e. forms lead to 
similar results, and, in consequence, the use of one or the other will depend on the 
specific application. Thus, in order to calculate the potential of a region with only 
one continuous dielectrical medium, it is more convenient to use the coefficients (8) 
due to their greater simplicity, while the use of (11) is necessary to find the f.d.e. at 
points belonging to boundaries between two homogeneous anisotropic dielectric 
media. 
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BOUNDARIES BETWEEN HOMOGENEOUS ANISOTROPIC DIELECTRICS 

The points belonging to the boundary between two different media present 
singularities in the permittivity derivatives. For geometries in which the normal 
directions to the boundary surfaces are well determined, the application of the 
boundary conditions on the field vectors provides the valid f.d.e. for these points. 
Nevertheless, when these surfaces do not have such a direction defined, as in the 
case of edges or apexes, other procedures are necessary. For the sake of simplycity 
the “inhomogeneous layer” method has been chosen. This method has already been 
used in isotropic media as well as in anisotropic media [4] when the eigen-direc- 
tions of tensor permittivity coincide with the grid direction. 

Let us first consider the case of a plane boundary between two homogeneous 
anisotropic media and let us use stars with equal arms centered on this boundary 
as shown in Fig. 2. The relative permittivity of both media are represented by the 
W and E tensors. The principal directions of the tensors do not coincide, in general, 
either with themselves or with the boundary directions. We will let the latter 
coincide with one of the coordinate axes (i.e., the Y-axis). 

The development of the method implies the consideration of an inhomogeneous 
layer interposed between both media. The value K(x) and its derivatives coincide 
with the original media at common points and are continuous in the whole layer 
width. Figure 3 shows the state of the stars derived from the introduction of this 
layer. 

Using the coefficients obtained in (11) to establish the corresponding relations of 
the stars centered at OE and 0 W, we obtain 

A,, v,, = - E11 v, + WI, 
2+t (1 + t)(2 + 2) v3 + &A VzE + v,,) 

(13) 

FIG. 2. Star centered in a regular boundary point 
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FIG. 3. Composed star including an inhomogeneous layer between E and W media. 

and 

powwow=- wll v,+ El, 
2+t (1 + t)(2 + t) VI + Wz( VZM + V4,,,) 

E12 
+2(2+t) 

---(V,- w+&u+ V6). (14) 

When making t -+ 0 the points OE and 0 W tend to become confused at the 
O-point in the same way as their potentials. In a similar way the 2E and 2 W points 
and the 4E and 4 W points become confused at 2 and 4 points, respectively, so that, 
at the limit, the sum of Eq. (13) and (14) turns out to be 

FIG. 4. Boundary between E and W media with a non-regular boundary point. 

581/95/Z-10 
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which is the f.d.e. expression corresponding to the case presented. The result for a 
horizontal boundary case can be straightforwardly obtained. 

In a similar way the method is applicable to points where it is not possible to use 
the boundary conditions, where the normal direction is not defined. Figure 4 
illustrates the distribution of the media which will be considered below. As in the 
previous case, an inhomogeneous layer is interposed between both media with the 
continuity conditions previously fixed. Figure 5 shows the star state derived from 
this model. In this case, it produces four stars centered on NE, NW, SE, and SW, 
and applying expression (11) to each star in the same way as in the previous case, 
the equations obtained are 

El, 
A.wV.v, =- 

WI, E22 w22 

2+r V,N+(1+t)(2+f) I’3,+2+r V2”+(1+t)(2+t) v4E 

+ E,, V, - W,, V, + W,2 V, - W,2 V, 
(2 + t)2 

A WI, 
dNW’Z+t 

E,, ~522 w22 

V3”+(1+t)(2+t) vlN+2+t “2”+(1+t)(2+t) v4w 

+ E,2 V, - W,2 V, + W,2 VT - W,2 V, 
(2 + t)2 

(16) 

A,,V,, =- w11 v,,+ WI, w22 ~522 

2+t (1+t)(2+t)V3s+2+rv4,+(1+t)(2+t)v2” 

+ E,2 V, - W,, V, + W,, VT - W,2 J’s 
(2 + t)2 

As,V.w=- w11 v,,+ 
W,, w22 w22 

2+t (1+t)(2+t)V1s+2+tV4W+(1+t)(2+t)V2W 

+ E,, V, - W,, V/, + W,2 V, - W,, V, 
(2 + t)2 

where the coeflicients of the first member are always the sum of those corre- 
sponding to the second. The direct sum of these equations gives us a relation 
between 16 points of the composite star of Fig. 5. Considering the coincidence of 
points and their potentials, the limit for t -+ 0 finally results in 

(EII + ~522 + El2 + 3 WI I+ 3 W22 - WI,) VO 

= (El, + W,I) VI + (E22 + W22) V2 

+2W,,I/,-t2W22V4+E,2V5 + w,,(v,- v,- v8) (17) 

which is the f.d.e. expression corresponding to the case presented. A single rotation 
of the subindex provides the f.d.e. corresponding to similar geometries. 
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FIG. 
edge. 

5. Composed star 
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EXAMPLES OF APPLICATION: DIRICHLET PROBLEMS INVOLVING ANISOTROPIC MEDIA 

As an example of the application of the method we present a solution for a 
Dirichlet problem outlined in Fig. 6. The idea is to find the potential distribution 
inside a square region. This region is partially occupied by an anisotropic medium 
limited by the y = +0.7, x = kO.3 lines. The tensor permittivity eigenvalues are 12 
and 3. 

The symmetry allows us to predict an antisymmetry with respect to the centre 
and to reduce the problem to one-half of the region. We will take this semi-region 
as y d 0. 

v=y 
- 

v=-1 

FIG. 6. < Contour and boundary in the first example. 



TABLE I 

Antisymmetrical contour: 
Isotropic medium 
Anisotropic med. 
Regular boundary 

Known potential 
Unknown potential: 
Anisotropic medium 
Isotropic medium 

12 Regular boundary 
5 Singular boundary 
2........................ 

.,,,_._.._...... 29 

30 
122 

17 
7 

1; 190 

a b 

i= 
1. 5 4.5 

i i 4.5 7.5 

e 

10.6820 3.1820 
t= 

3.1DZO I 4.3180 

4.3180 3.1020 
IT= 

\3,1820 10.6820 

FIG. 7. Equipotential solution lines for different shapes of anisotropic material, The angles between 
the X-axis and tibre are 0, n/8. n/4, 37-c/8, and n/2. 
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The grid of points is established by means of 10 equidistant lines parallel to the 
X-axis and 19 equidistant lines parallel to the Y-axis. In this way we have 219 
points distributed as shown in Table I. 

To solve this problem an iterative over-relaxation method (Frankel and Young 
method) has been used, with a convergence factor w estimated as 1.35 [9]. The 
iteration was carried out until all the residuals were less than 0.001. On this struc- 
ture, the result for the live trials carried out are presented; for the same material all 
these were separated into different eigenvector orientations of the tensor permit- 
tivity directions. The first and the last correspond to a previous study [S]. 

In Figs, 7a-e the families of equipotential lines separated by 0.1 units of 
potential are presented. The shaded region in the dielectric medium in each case 
indicates the eigen-vector direction which corresponds to the greatest permittivity 
eigen-value. 

Finally, the potential distribution of the problem outlined in Fig. 8 is found. An 
anisotropic material having empty cylindrical holes, with diameter 0.7 and an axis 
parallel to the Z-axis, is placed between two parallel electrodes (i.e., x = 0, x = 1). 

FIG. 8. Pierced dielectric between plane electrodes. 
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FIG. 9. Pattern grid in the second example 

Tensor permittivity is defined by K,, = 9, K,, = 6, and K,, = 4. The shaded region 
in the dielectric medium indicates the eigen-vector direction which corresponds to 
the greatest permittivity eigen-value. 

The periodic distribution allows us to reduce this problem to a region with a 
single hole, considering a suitable expression in this boundary, without taking into 
account the foreseable antisymmetry. 

The grid points are established by two sets of lines, 41 parallel to the X-axis and 
30 parallel to the Y-axis (Fig. 9). The polygonal line is the boundary of a hole with 
a diameter between 0.6994 and 0.7082. (See Table II.) 

In this case we have taken 1.80 as the convergence factor and 0.0003 as the maxi- 
mum residual in a complete iteration. Figure 10 shows families of equipotential 
lines separated by 0.1 from the potential of the electrodes. 

TABLE II 

Isotropic medium: 
Sym. star e = M, = n = s 
Sym. star e = ~3 # n = s 
Asym. s. e # MI or n # s 
Asym. s. e # w and n # s 

Known potential . . . 82 
Unknown potential: 
Anisotropic medium 449 

196 Regular boundary 36 
324 Singular boundary 68 
132 Periodic boundary 62 

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...656 1271 
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FIG. 10. Equipotential solution lines in the second example. 
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